g^2+19g=72

Simple and best practice solution for g^2+19g=72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for g^2+19g=72 equation:



g^2+19g=72
We move all terms to the left:
g^2+19g-(72)=0
a = 1; b = 19; c = -72;
Δ = b2-4ac
Δ = 192-4·1·(-72)
Δ = 649
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-\sqrt{649}}{2*1}=\frac{-19-\sqrt{649}}{2} $
$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+\sqrt{649}}{2*1}=\frac{-19+\sqrt{649}}{2} $

See similar equations:

| 6h-+7=11 | | -4=c/7 | | 10x-5x=3(x-4)-2(2x+7) | | x²+8x-1=0 | | 5x-2=12x-2(x-4) | | 104x+1=105 | | 2^1-x=3^4x+6 | | 33x=48 | | F(×)=2x+1 | | 6a+5a=−11 | | 2x+86=2x+94=180 | | (x-2)(x+2)=(2x-4)(x+2) | | 12+4x=11x+3-180 | | (x-2)+(x+2)=(2x-4)+(x+2) | | 12+4x=11x+3 | | 12+4x=11x+3=180 | | 45/9=12-x | | x+1=-9+2x=180 | | 19y=8 | | 3x²+9x=13 | | 3/5x-1/3=-7-2/3x | | n+48=146 | | 3(3u-1)+3u+3=5(u+6)-3u | | —11=-2/3a | | 2×-y=12 | | 4(3u+1)+5u+5=6(u+3)+2u | | 7z+35=5(3z-1) | | -5(k+3)-14=3k+11 | | 8q-6(q+4)=10q | | -7x+3x-6=-2(12-x) | | 4a2+9a+5=0 | | 2a+2(3a-6)=104 |

Equations solver categories